首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   422篇
  免费   30篇
  2023年   2篇
  2021年   4篇
  2019年   5篇
  2018年   10篇
  2017年   7篇
  2016年   11篇
  2015年   19篇
  2014年   12篇
  2013年   26篇
  2012年   22篇
  2011年   31篇
  2010年   9篇
  2009年   16篇
  2008年   31篇
  2007年   29篇
  2006年   26篇
  2005年   24篇
  2004年   27篇
  2003年   27篇
  2002年   17篇
  2001年   12篇
  2000年   20篇
  1999年   6篇
  1998年   2篇
  1997年   6篇
  1996年   4篇
  1995年   6篇
  1994年   6篇
  1992年   2篇
  1991年   5篇
  1990年   6篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1971年   1篇
排序方式: 共有452条查询结果,搜索用时 31 毫秒
41.
Sonic hedgehog (Shh) is a crucial regulator of organ development during embryogenesis. We investigated whether intramyocardial gene transfer of naked DNA encoding human Shh (phShh) could promote a favorable effect on recovery from acute and chronic myocardial ischemia in adult animals, not only by promoting neovascularization, but by broader effects, consistent with the role of this morphogen in embryogenesis. After Shh gene transfer, the hedgehog pathway was upregulated in mammalian fibroblasts and cardiomyocytes. This resulted in preservation of left ventricular function in both acute and chronic myocardial ischemia by enhanced neovascularization, and reduced fibrosis and cardiac apoptosis. Shh gene transfer also enhanced the contribution of bone marrow-derived endothelial progenitor cells to myocardial neovascularization. These data suggest that Shh gene therapy may have considerable therapeutic potential in individuals with acute and chronic myocardial ischemia by triggering expression of multiple trophic factors and engendering tissue repair in the adult heart.  相似文献   
42.
Xestoquinone and related metabolites (the xestoquinone family) occur in marine sponges and are known to show a variety of biological activities. In this study, the first comprehensive evaluation of antifungal activity was performed for xestoquinone and nine natural and unnatural analogues in comparison with their cytotoxicity. The cytotoxicity against two human squamous cell carcinoma cell lines, A431 and Nakata, indicated that the terminal quinone structure of the polycyclic molecules was important (xestoquinone, etc.) and that the presence of a ketone group at C-3 of the opposite terminus dramatically diminished the activity (halenaquinone, etc.). In contrast, a ketone group at C-3 enhanced the antifungal activity against the plant pathogen, Phytophthora capsici, regardless of the presence of a quinone moiety. The cytotoxicity and antifungal activity of the xestoquinone family were negatively correlated with each other.  相似文献   
43.
Novel non-natural amino acids carrying a dansyl fluorescent group were designed, synthesized, and incorporated into various positions of streptavidin by using a CGGG four-base codon in an Escherichia coli in vitro translation system. 2,6-Dansyl-aminophenylalanine (2,6-dnsAF) was found to be incorporated into the protein more efficiently than 1,5-dansyl-lysine, 2,6-dansyl-lysine, and 1,5-dansyl-aminophenylalanine. Fluorescence measurements indicate that the position-specific incorporation of the 2,6-dnsAF is a useful technique to probe protein structures. These results also indicate that well-designed non-natural amino acids carrying relatively large side chains can be accepted as substrates of the translation system.  相似文献   
44.
Shortening and stiffness were measured simultaneously in the aboral ligament of arms of sea lilies. Arm pieces were used from which oral tissues (including muscles) were removed, leaving only collagenous ligaments connecting arm ossicles. Chemical stimulation by means of artificial seawater with an elevated concentration of potassium caused both a bending movement and stiffness changes (either softening or stiffening). The movement lasted for 1.5-10 min, and bent posture was maintained. The observation that contraction was not necessarily associated with softening provided evidence against the hypothesis that the shortening of the aboral ligaments was driven by the elastic components that had been charged by the oral muscles and released their strain energy at the softening of the aboral ligaments. The speed of ligamental shortening was slower by at least one order of magnitude than that of muscles. Acetylcholine (10(-5)-10(-3) M) caused both contraction and softening. We conclude that the aboral ligament shows two mechanical activities based on different mechanisms: one is active contraction and the other is connective tissue catch in which passive mechanical properties show mutability. We suggest that there is neural coordination between the two mechanisms.  相似文献   
45.
Under long-day conditions larvae of Psacothea hilaris (Coleoptera: Cerambycidae) pupate after the 4th or 5th instar, while under short-day conditions they undergo 2-4 nonstationary supernumerary molts and eventually enter diapause. To explore the possibility of a threshold weight for entering diapause, P. hilaris larvae were deprived of food on days 0 (day of ecdysis), 4 or 8 of the 4th, 5th and 6th instars under short-day conditions. Within the first 40 days of starvation, 60% of the larvae starved starting on day 0 of the 4th instar died, but all the larvae starved at later stages survived. The incidence of diapause in these survivors was determined by the occurrence of pupation after a temporary chilling at 15 degrees C for 15 days. Diapause incidence increased as the onset of starvation was delayed; from 11% in the larvae starved on day 0 of the 5th instar to 100% in the larvae starved on day 4 and day 8 of the 6th instar. Analysis of the relationship between the initial weight of a respective larva at the onset of starvation and its pupation success revealed that none of the larvae weighing 690 mg did. This finding suggests the presence of a threshold weight (about 600 mg), below which larvae are incapable of entering diapause. We discuss these findings with reference to the life history of P. hilaris.  相似文献   
46.
Ameloblastin is an enamel-specific protein that plays critical roles in enamel formation, as well as adhesion between ameloblasts and the enamel matrix, as shown by analyses of ameloblastin-null mice. In the present study, we produced two distinct antibodies that recognize the N-terminus and C-terminus regions of caiman ameloblastin, in order to elucidate the fate of ameloblastin peptides during tooth development. An immunohistochemical study using the antibodies showed that caiman ameloblastin was a tooth-specific matrix protein that may initially be cleaved into two groups, N- and C-terminal peptides, as shown in mammals. The distribution of the N-terminal peptides was much different from that of the C-terminal peptides during enamel formation; however, it was similar to that of mammalian ameloblastin. Although ameloblastin is thought to have a relationship with the enamel prismatic structure in mammals, in the caiman, which has non-prismatic enamel, functional ameloblastin has no relationship with any enamel structure. Consequently, it is suggested that ameloblastin has kept its original functions during the evolutionary transition from reptiles to mammals and that it has been conserved in both lineages during more than 200 million years of evolution. Our results support the notion that ameloblastin acts as a factor for ameloblast adhesion to enamel matrix, because distribution of the C-terminal peptides was consistently restricted on the surface layers of enamel matrix specimens ranging from immature to nearly completely mature. The principal molecules that provide the adhesive function are presumably C-terminal peptides.  相似文献   
47.
48.
The cell division-related gene A (cdrA) of Helicobacter pylori is dispensable in vivo and unique in having a repressive role on cell division and long-term survival. To clarify its role, comparisons of the wildtype HPK5 and isogenic cdrA-disrupted mutant HPKT510 were examined by ultrastructural morphology, PBP profiles, and susceptibility to beta-lactam antibiotics during long-term cultivation. Ultrastructural analyses revealed that the shorter rods of HPKT510 had a slightly wider periplasmic space between the inner and the outer membrane than those of HPK5. Cell division of HPKT510 cells was complete even under high-salt conditions in which HPK5 cells became filamentous due to inhibition of division. The filamentous HPK5 cells constructed an inner membrane without a cell wall at the presumed division site. After 4 days of cultivation (the late stationary phase), most of the HPK5 cells turned into ghosts and aggregates, while some of the HPKT510 cells remained as curved rods, which coincided with the results of cell viability. HPKT510 cells became resistant to ampicillin killing compared to HPK5 cells, although their minimum inhibitory concentrations (MICs) and PBP profiles were not significantly different. These results suggest that the cdrA product represses cell division via inhibiting cell wall synthesis at division site. During infection in both mice and humans, inactivation of cdrA eventually gains biological aspects such as increased viability, long-term survival and tolerance to antibiotics and high-salt condition, which might enhance a persistent infection.  相似文献   
49.
Calopteryx cornelia females oviposit almost exclusively underwater in forest streams. Field observation showed that the duration of uninterrupted submerged oviposition ranged between 20 and 120 min and the number of eggs laid was linearly related to the time spent underwater. By holding a damselfly under water in a small jar, we measured the maximum 'submergence potential', which was defined as the time elapsed between placing the insect underwater and asphyxiation. A series of experiments showed that there was no gender difference in the submergence potential. This was about 120 min if a damselfly was allowed to change its position while under water. The submergence potential was shorter if the damselflies were kept motionless, if air bubbles trapped on the wing surfaces were removed by coating with Vaseline or if the water was hypoxic. By contrast, submergence potential was longer if a part of the wings were kept above the water surface, or if the water was agitated using a magnetic stirrer. These results suggest that ovipositing C. cornelia females depend for oxygen on the physical-gill action of the thin air layer trapped on the body and wing surfaces. Respiration capacity under water is not likely to be a limiting factor for ovipositing females during the production of a single clutch.  相似文献   
50.
In vitro selection and directed evolution of peptides from mRNA display are powerful strategies to find novel peptide ligands that bind to target biomolecules. In this study, we expanded the mRNA display method to include multiple nonnatural amino acids by introducing three different four-base codons at a randomly selected single position on the mRNA. Another nonnatural amino acid may be introduced by suppressing an amber codon that may appear from a (NNK)n nucleotide sequence on the mRNA. The mRNA display was expressed in an Escherichia coli in vitro translation system in the presence of three types of tRNAs carrying different four-base anticodons and a tRNA carrying an amber anticodon, the tRNAs being chemically aminoacylated with different nonnatural amino acids. The complexity of the starting mRNA-displayed peptide library was estimated to be 1.1 × 1012 molecules. The effectiveness of the four-base codon mediated mRNA display method was demonstrated in the selection of biocytin-containing peptides on streptavidin-coated beads. Moreover, a novel streptavidin-binding nonnatural peptide containing benzoylphenylalanine was obtained from the nonnatural peptide library. The nonnatural peptide library from the four-base codon mediated mRNA display provides much wider functional and structural diversity than conventional peptide libraries that are constituted from 20 naturally occurring amino acids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号